ON THE PROBLEM OF CONTROL FOR A SYSTEM OF
 DIFFERENTIAL EQUATIONS WITH TIME LAG

(K ZADACHF OB UPRAVLENII DLIA SISTEMY
 DIFFEEENTSIAL'NYKH URAVNENII $\$$ ZAPAZDYVANIEM)

PMM Vol.30, N: b, 1906, pp. 1121-1124

A.B. KURZHANSKII
(Svordiovek)

(Received May 21, 1966)

We shall investigate the problem of bringing the motions of a controlled system described by 11 near differential equations with time lag, into the state of equilibrim. Let the system with time lag be

$$
\begin{equation*}
x(t)=A x(t)+G x(t-\tau)+B u(t) \tag{1}
\end{equation*}
$$

where A and G are constant $n \times n$ matrices and B is a constant $n \times m$ matrix. Function $u(t)=\left\{u_{1}(t), \ldots, u_{m}(t)\right\}$ denotes an m-dimensional control. Time lag T is constant. Let us consider the problem of stabilization [1] of the system (1). This means, that for the system in question such a control $u(t)$ should be found which, firstly, carries the system from its given initial state $x_{0}(t)=\mathrm{T}(t),(-\tau \leqslant t \leqslant 0)$ into the state $x(T)=0$ and which, secondiy, maintains it in this state over the interval of time $T \leq t \leq T+T$. (We should note, that problems of control for the systems with time lag were investigated in their various aspects in [2 to 4]).

Let us consider one of the simplest cases. Assume, that the matrix G is nonsingular. Let the vectors $b^{(i)}(t=1, \ldots, m)$ denote the columns of matrix B and let us write the equation $G_{c}=b$. This defines uniquely vector 0 in terms of the known vector b. In particular, for each of the vectors $b^{(i)}$ we can find $c^{(i)}=G^{-1} b^{(i)}$. Now suppose, that $n \leq 2 m$ and that n linearly independent vectors can be selected from the set of vectors $b^{(i)}$ and $c^{(i)}(t=1, \ldots, m)$. We can assume the vectors $b^{(1)}$ to be lincarly independent without any loss of generality. Then, we can inciude the vectors $b^{(i)}$ as first m of n linearly independent vectors and arrange them in such an order, that the linearly independent vectors will be $b^{(1,}, \ldots, b^{(m)}$, $c^{(L)}, \ldots, c^{n-m}$. Let these vectors form a base on the space (*) $\left[\dot{x}_{1}, \ldots, x_{n}\right]$
 Kronecker delta). \ln such coordinates, matrices G and B have the form

$$
G=\left(\begin{array}{cc}
G_{1} & E_{n-m}^{*} \\
G_{2} & 0
\end{array}\right) \quad B=\binom{E_{m}}{0}
$$

Here E_{n-} and E_{m} are $(n-m)$ and denotes a nonsingular ($m \times m$) matrix. additional notation. We shall denote
m-dimensional unit matrices and G_{2} We shall now introduce the following the m-dimensional subspace generated

[^0]by the vectors $b^{(i)},(t=1, \ldots, m)$ by $F^{(a)}$, and the $(n-m)$-dimensional subspace generated by $c^{(k)}$, by $F^{(b)}$. The direct sum of $F^{(a)}$ and $F^{(b)} 1 s$, obviously, the whole of the space $\left\{x_{1}, \ldots, x_{n}\right\}$. We shall also assume that $x^{(a)}$ is an m-dimensional vector whose components are $x_{i}^{(a)}=x_{i}(i(b) \underline{1}, \ldots, m)$ while $x^{(v)}$ is an $(n-m)$-dimensional vector with components $x_{j}{ }^{(b)}=x_{m+i}(j=1, \ldots$ $\dot{(i)}, n-m)$ In the latter case n, a vector with components $\left(x_{1}^{(a)}\right.$,, $\left.x_{m}^{(\dot{a},}, 0, \ldots, 0\right)$ will denote the component of $x^{(b)}$ belonging to $F(a)$ and $(n-m)$, a vector with components ($0, \ldots, 0, x_{1}^{(b)}, \ldots, x_{n-m}^{(b)}$) will denote the component of x belonging to $F^{(b)}$. The $(n-m)$-dimensional vector with components $\left(u_{1}, \ldots, u_{n-1}\right)$ obtained from $u w_{111}$ be denoted by $u^{(1)}$, and the ($2 m-n$)dimensional vector with components $\left(u_{n-1+1}, \ldots, u_{n}\right)$, by $u^{(2)}$.

Then, $u_{i}^{(1)}=u_{i} \quad(t=1, \ldots, n-m)$ and $u_{j}^{(2)}=u_{j+n-m}(j=1,2 m-n)$.
Finally, let us put

$$
A=\left(\begin{array}{ll}
A^{(1)}, & A^{(3)} \\
A^{(2)}, & \mathbf{1}^{(4)}
\end{array}\right) \quad G_{2}=\binom{G_{2}^{(1)}}{G_{2}^{(2)}}
$$

Here $A^{(1)}$ and $A^{(4)}$ are the $(m \times m)$ and $(n-m) \times(n-m)$ matrices respectively, While $G_{2}^{(2)}$ is a rectangular $m \times(n-m)$ matrix. We assume that $T=T+\varepsilon$ $(0<\varepsilon \leqslant \tau)$. The necessary and sufficient condition for the vector $x(t)$ to be identically zero on the interval $T \leqslant t \leqslant T+\tau$, are

$$
\begin{align*}
& B u(t)+G x(t-\tau)=0, \tag{}\\
& x(T)=0 \tag{3}
\end{align*}
$$

Let us write (2) as

$$
\begin{gather*}
u^{(\mathbf{1})}(t)+G_{1} x^{(a)}(t-\tau)+x^{(b)}(t-\tau)=0, \quad u^{(2)}(t)+G_{2}^{(\mathbf{1})} x^{(a)}(t-\tau)--0 \tag{4}\\
G_{2}^{(2)} x^{(a)}(t-\tau)=0 \tag{5}
\end{gather*}
$$

Here (5) defines the necessary and sufficient conditions for (2) to be fulfilled by a suitable choice of $u(t)$. At the same time, the form of (5) implies that (2) can be satisfied in any case, provided that $x^{(a)}(t)=0$ when $T-\tau \leq t \leq T$. In other words, condition (2) is fulfilled, when the vector $x(t)$ is adjacent to all t from the interval $T-T \leq t \leq T$ in the subspace $F^{(0)}$ If the last requirement is satisfied, then the conditions (4) can yield the control $u(t)$ on the interval $T \leq t \leq T+\tau$, namely

$$
u^{(1)}(t)=-x^{(b)}(t-\tau), \quad u^{(2)}(t)=0
$$

From this it follows, that when $T-T \leq t \leq T$, then the vector $x(t)$ lies in $F^{(b)}$. But the last condition is fulfilled if and only if

$$
x^{\cdot}(t)^{\cdot} \in F^{(b)} \quad \text { for } \quad T-\tau \leqslant t \leqslant T, \quad x(T-\tau) \in F^{(b)}
$$

or, in the more detailed form

$$
\begin{gather*}
x^{\cdot(a)}(t)=A^{(3)} x^{(b)}(t)+\left(\begin{array}{cc}
G_{1} & E_{n-m} \\
G_{2}^{(1)} & 0
\end{array}\right) x(t-\tau)-\therefore u(t) \doteq 0 \tag{f}\\
x^{\cdot(b)}(t)=A^{(4)} x^{(b)}(t)+G_{2}^{(2)} x^{(a)}(t-\tau) \quad(T-\tau \leqslant t \leqslant T) \\
x^{(a)}(T-\tau)=x^{(a)}(\varepsilon)=0 \tag{7}
\end{gather*}
$$

Equation (6) allows us to find $u(t)$ on the interval $T-T \leq t \leq T$.
It remains now to establish the control $u(t)$ on the interval $0 \leq t \leq \varepsilon$ such, that conditions (3) and (7) are fulfilled. Let us write the condition (7) first. We note that for $0 \leq t \leq \varepsilon$, Equation (1) has the form

$$
\begin{equation*}
x^{\cdot}(t)=A x(t)+G \varphi(t-\tau)+B u(t) \quad(x(1)=\varphi(0)) \tag{8}
\end{equation*}
$$

Using the Cauchy formula [5] we find, that the equality $x^{(a)}(\varepsilon)=0$ is equivalent to

$$
\begin{equation*}
\int_{0}^{\varepsilon} X^{(1)}(\varepsilon-\vartheta) u(\vartheta) d \vartheta==\gamma^{i(i)} \tag{9}
\end{equation*}
$$

Here $X^{(1)}(t-\hat{\theta})$ denotes an m-dimensional square matrix related to the fundamental matrix $X(t-\theta)(X(0)=E)$ of the n-dimensional homogeneous linear system

$$
x^{*}(t)=A x(t)
$$

in such a way, that

$$
X(t-\theta)=\left(\begin{array}{ll}
X^{(1)}(t-\vartheta) & X^{(3)}(t-\vartheta) \\
X^{(2)}(t-\vartheta) & X^{(4)}(t-\vartheta)
\end{array}\right)
$$

The magnitude $\gamma^{(a)}$ is an m-dimensional constant vector given by

$$
\left.\gamma^{(a)}=-\left[\left(X^{(1)}(\varepsilon) X^{(3)}(\varepsilon)\right), \Phi(0)+\int_{0}^{\varepsilon}\left(X^{(1)}(\varepsilon-\vartheta), X^{(3)}(\varepsilon-\vartheta)\right) G \varphi(\hat{0}-\tau) d \hat{)}\right)\right]
$$

Let us now consider condition (3). In $v(1 e w$ of (6) and (7), it means that $x^{(b)}(T)=x^{(b)}(\tau+\varepsilon)=0$. We can determine $x^{(b)}(\tau+\varepsilon)$ using the Cauchy formula, but we must remember that the vector $x(t)$ satisfies the condition (8) on the interval $0 \leq t \leq \varepsilon$ and the vector $x^{(0)}(t)$ satisfies the second equation of (6) on the interval $\left.\epsilon \leq t_{(b)}\right)^{\top}+\epsilon$. But then, writing out, on one hand, the complete expression for $x^{(b)}(\tau+e)$ and assuming, on the other hand, that $x^{(b)}(\tau+\varepsilon)=0$, we find, that (3) reduces to

$$
X^{(b)}(\tau) \int_{0}^{\varepsilon} X^{(2)}(\varepsilon-\vartheta) u(\vartheta) d \vartheta+\int_{0}^{\varepsilon} X^{(b)}(\varepsilon-\xi) G_{2}^{(2)}\left[\int_{0}^{\xi} X^{(1)}(\xi-\vartheta) u(\hat{v}) d \vartheta\right] d \xi=\gamma^{(b)}
$$

Here $X^{(b)}(t-v) \quad\left(X^{(b)}(0)=E\right)$ denotes the fundamental matrix of the ($n-m$)-dimensional system

$$
x^{\cdot(b)}(t)=A^{(4)} x^{(b)}(t)
$$

while the constant $(n-m)$ vector $\gamma^{(b)}$ can be found from

$$
-\gamma^{(b)}=X^{(b)}(\tau)\left(X^{(2)}(\varepsilon), X^{(4)}(\varepsilon) \varphi^{(b)}(0)+\right.
$$

$$
+X^{(b)}(\tau) \int_{0}^{\varepsilon}\left(X^{(2)}(\varepsilon-\vartheta), X^{(4)}(\varepsilon-\vartheta)\right) G \varphi(\vartheta-\tau) d \vartheta+
$$

$$
\begin{aligned}
& +\int_{0}^{\tau} X^{(0)}(\tau+\varepsilon-\vartheta) G_{2}^{(2)} \varphi^{(a)}(\vartheta-\tau) d \tau+\int_{0}^{\varepsilon} X^{(b)}(\varepsilon-\vartheta) G_{2}^{(2)}\left(X^{(1)}(\vartheta), X^{(3)}(\vartheta)\right) \varphi(0) d \vartheta+ \\
& \left.\quad+\int_{0}^{\varepsilon} X^{(b)}(\varepsilon-\vartheta) G_{2}^{(2)} \int_{0}^{\vartheta}\left(X^{(0)}(\vartheta-\xi), X^{(3)}(\vartheta-\xi)\right) G \varphi(\xi-\tau) d \xi\right] d \vartheta
\end{aligned}
$$

Equations (9) and (10) can be combined into

$$
\int_{0}^{\varepsilon} h^{(i)}(\varepsilon, \vartheta) u(\vartheta) d \vartheta=\gamma_{i}
$$

Here $h^{(i)}(\varepsilon, \vartheta),(\ell=1, \ldots, n)$ denote k-dimensional column vectors coinciding with the corresponding columns of the matrix $X^{(1)}(\varepsilon-\vartheta)$ for $t=1, \ldots, m$, and the matrix

$$
X^{(b)}(\tau) X^{(2)}(\varepsilon-\vartheta) \div \int_{\dot{j}}^{\varepsilon} X^{(b)}(\varepsilon-\xi) G_{2}^{(2)} X^{(1)}(\xi-\vartheta) d \xi
$$

for $t=m+1, \ldots, n$. Magnitudes γ_{i} are pure numbers, and

$$
\gamma_{i}^{(a)}=\gamma_{i} ; \text { if } i=1, \ldots, m, \gamma_{j}^{(b)}=\gamma_{j i m}, \quad \text { if } \quad i=1, \ldots, n-m
$$

In this manner we have reduced our problem to the problem of momentums [6]. It has for any γ_{1} a solution, if and only if the vectors $h^{(i)}(\varepsilon, v)$ are

Inearly independent. Control can then be obtained ky well known methods, and the problem has a unique solution. Any function $\mu^{\circ}(t)$ can be singled out of the set of solutions by imposing on $u(t)$ additional constraints such as some conditions of optimality, for example in form of a minimum of some norm of $u(t)$. The latter can be achieved by standard methods [6]. Finally, wewe shall note that in our case the functions $h^{(i)}(\varepsilon, \vartheta)$ will always be linearly independent, provided that $|A| \neq 0$ and that the conditions of generality of position [7] hold for the matrices A and B.

BIBLIOGRAPHY

1. Krasovski1, N.N., Optimal'nye protsessy v sistemakh s zapazdyvaniem. Optimal nye sistermy. Statisticheskie metody (Optimal processes in systems with time lag. Optimal systems, Statistical methods.). Proceedings of the second international congress IFAK, Vol.2, M., Nauka, 1965.
2. Ogliztorelli, M.N., A time optimal control problem for systems described by differential-difference equations. J.Soc.Industr. and Appl.Math. Contr., Al, № 3, 1963.
3. Ozhiganova, I.A., Ob uslovilakh invariantnosti dila odnoi ineinoi zadachi s zapazdyvaniem. Trudy seminara po teoril differentsial'nykh uravnenil s otkloniaiushohimsia argumentom (on the invariance conditions for a linear problem with delay. Proceedings of the siminar on the theory of differential equations with varying arguments). M., Un-t druzhby narodov im. P.Lumumba, Vol.3, 1965.
4. Churakova, S.V., Odna zadacha optimal'nogo upravlenila v sistemakh s posledstviem. Tezisy dokladov vsesoiuzn.mezhvuz.konf.po teori1 1 prilozhenilam differentsial'nykh uravnenil s otkioniaiushchimsia argumentom (Problem of Optimal Control in Systems with Delay. Theses of the proceedings of the all-union conference of higher educ. establishments on the theory and applications of differential equations with varying arguments). Chernovtsy, 1965.
5. Nemytski1, V.V. and Stepanov, V.V., Kachestvennaia teorifa differentsial'nykh uravnenil (Qualitative Theory of Differential Equations). 2nd ed., M.-L., Gostekhizdat, 1949.
6. Krasovskil, N.N., K teori1 upravilaemosti 1 nabliudaemosti lineinykh dinamicheskikh sistem (on the theory of controllability and observab11ity of linear dynamic systems). PMM. Vol.28, N $1,1964$.
7. Pontriagin, L.C., Boltianskii, V.G., Gamkrelidzé, R.V. and Mishchenko, E.F., Natematicheskaia teorila optimal'nykh protsessov (Mathematical Theory of Optimal Processes). M., Fizmatgiz, 1961.

[^0]: We retain the old notation for the phase coordinates in order to simplify the symbolism.

