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We shall investigate the problem of bringing the motions of a controlled sys-

tem described by linear differential equations with time lag, lInto the state
of equilibri m. Let the system with time lag be

2 () = Aty + Gzt — 1)+ Bu (D) (H
where 4 and ¢ are constant n X n matrices and p 1s a constant n X nm
matrix. Function u(t) = {u (f), ..., Uy ()} denotes an m-dimensional control.

Time lag T 1is constant, Let us conslider the problem of stabllization [1]
of the system (1). This heans, that for the system in question such a con-
trol u(¢) should be found which, firstly, carries the system from its gilven
initlal state x5 {f) =@ {t), (—T <1 <C0) 1into the state x{7) = 0 and which,
secondly, maintains it in thls state over the interval of time T < ¢ < T+,
{We should note, that problems of control for the systems with time lag were
investigated in their various aspects in [2 to 4]).

Let us consider one of the simplest cases. Assume, that the matrix G
is nonsingular. Let the vectors »% (1 = 1,..., m) denote the columns of
matrix B and let us write the equation Gec = » . This defines uniquely
vector ¢ in terms of the known vector & . In particular, for each of the
vectors 3{1) we can find ¥ — g-p)  Now suppose, that n s 2» and that
n  linearly independent vectors can be selected from the set of vectors FAQ)
and ¢® {i = 1,..., m). We can assume the vectors 3% to be linearly
independent without any loss of generality. Then, we can Include the vectors
D as first m of n linearly independent vectors and arrange them in
such an order, that the linearly independent vectors will be b'™ .. o™,
B L eV Let t&ﬁse vectors form a base on the space (*) {x,,..., x,]
so, that.b&":éﬁ, S5 = Opgmyh i=1,.... mi k=1, ..., n—=m =1 .., 10
{where (b ana LY are” components of vectors p(v and ¢® and 3i; 1s a
Kronecker delta). ~1n such coordinates, matrices ¢ and B have the form

¢ G E,_, K z:{ﬁkn)
G, 0 .0
Here £,., and ¥, are (n—m) and m-dimensional unit matrices and G,

denotes a nonsingular (m Xm) matrix. We shall now introduce the following
additional notation. We shall denote the m-dimensional subspace generated

* We retain the old notation for the phase coordinatcs in order to simplify
the symbolism.
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by the vectors b, (¢ = l’(é)"’ m) by F'Y, and the (n—m)-dimensional subspace

generated by ¢® |, by F The direct sum of F{® "ang r® 1s, obvi=
ously, the whoie of the space {Xy5000s X0} Sshall also assume that z
is an m~dimensional vector whose components are :r = (1 .»m)  while

' ()"xm-m(j-l,...
n—m). In the latter case n , a vector with components (x’“’

(,‘;’, 0,...,0) will denote the component of X belonging to F(a) and (n, - m),

a vector with components ©0,....0, Ty e (nm) will denote the component

of x Dbelonging to FU . 'The (n m) dimenslonal vector with components

(Uy5.-., Ua—w) Obtalned from u will be denoted by u'!, and the (2n—n)-

dimensional vector with components (u,,..H yeeey u.K, by u®.

Then, =1 (¢ =1,..., n-m) and uP =u,, . (f =1, on—n).
Finally, let us put

AL 43 G.:(l)
A == ’ Gz =
AD 4@ G,
Here AV and 49 are the (mxm) and (n —m) x (n—m) matrices respectiwly,
while G(f) is a rectangular m x{n—m) matrix. We assume that T =t + ¢

(U< & <. T). The necessary and sufficient condition for the vector x(t) to
be identically zero on the interval r<:<T-+n1 , are

is an {(n—m)-dimensional vector with components

u(t) + Gz (t— 1) = 0, (T< (<< T-1) )
z(T)=0 (3)

Let us write (2) as
uV () + 6@ ¢ — 1)+ 2@ ¢ — 1) =0, u (@) + PV —1) =0 (4)
P2 (1 —1) =0 (5)

Here (5) defines the necessary and sufficient conditions for (2) to be
fulfilled by a suitable choice of wu(t) . At the same time, the form of (5)
implies that (2) can be satisfied in any case, provided that z® (;) = 0 when
T —7=<¢t < T . In other words, condition (25 is fulfilled, when the vector
x(t) 1s adjacent to all ¢ from the interval 7T—1T < ¢ < T 1in the subspace
F If the last requirement is satisfied, then the conditions (4) can yield
the control u(t) on the interval T < ¢ < T + 7 , namely

u® () = — (¢ — 1), uD ()= 0

From this 1t follows, that when 7 — T < ¢t < T , then the vector x(¢) lies
in F b) But the last condition is fulfilled if and only if

(Y EF® for T —1<t<T, (T — 1) F®
or, 1n the more detailed form

G En—m .
(@ (z):A(")x(b)(z)-,L( )a:(t—-r)»' w(t)=0 ("
¢» 0
=® () = A@ 0 (0 -+ G(g)x(a) t—1) (T —1<t<<7T)
e (T —1) = 2@ (g) = 0 (M)

Equation (6) allows us to find u(¢) on the interval 7 — 7 < ¢ = T .

It remains now to establish the control wu(¢) on the interval O < ¢t < ¢
such, that conditions (3) and (7) are fulfilled. Let us write the condition
(7) first. We note thakb for O s ¢t < e , Equation (1) has the form

' (t) = Az (&) + G (¢ — T) -+ Bu (1) (x 1) = ¢ (0)) (8)

Using the Cauchy formula [.5] we find, that the equality £ (e) = 0 1is
equivalent to

\ xw (e — O) u (B) d® == 4l (4

O‘L/.(-
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Here Xm {t — #) denotes an m-dimensional square matrix related to the
fundamental matrix X (t — %) (X (0) = E)' of the n~dimensional homogeneous
linear system

T () = Ax (1)
in such a way, that

oy ®)
X(t*ﬁ)z(x (t—8 X®@ 1‘)))

X —9) x@ (t— )

The magnitude ‘y(") is an m-dimensional constant vector given by
£

19 =— (X X9 )0 O + §x® (e —9),x® (e —9)) G (8 — 1) 0]
0

Let us now consider condition (3). 1In view of (6) and (7), it means that
£ (T) == 2t + €)== 0. We can determine z¥ (v + e) using the Cauchy formula,
but we must remember that the vector "f(t) satisfles the condition :{8) on the
interval O s £ < ¢ and the vector ¥ (1) satisfles the second equation of
(6) on the interval ¢ < t,s T+e . But then, writing out, on one hand, the
complete expression for at )(1:—!- 2) and assuming, on the other hand, that
2@ (¢ + ¢) = 0, we find, that (3) reduces to (10)

[ e |3
X% (v S X® (g — B) u (§)dd -1 S X (e — ) G [S X (E —8) u(9) dﬁ] dE = ¢(®
) 0 o
Here X®(t —9) (X (0) = E) denotes the fundamental matrix of the
(n — m)-dimensional system -
z® (&) == AW® (€3]
while the constant (n--m) vector y(b) can be found from

—q® = x® (1) (X (&), ¥ (&) o) (0) +-

£
+ X (g S (XD (e —8), X9 (e — ) Gp (& — 1) d® -
0
- €
+ ( X e —9) 6P (6 —1)dr - % X® (e —9) G2 (X V(§), X3 (8)) @ (0) 4B L

0 0

3 35
+ {1 @ =96 (0 —9x0 0 — 1) 6oz —m az] a0
] ’

<

Equations (9) and (10} can be combined into
&
(R (e, 0 u(®ra0 =1;
0

Here AV (e, ®), (¢ = 1,..., n) denote k-dimensional column vectors coinci=-
ding with the corresponding columns of the matrix XYW (e —9) for t=1,...,m,
and the matrix

£
X (v) X (e —0) - R x® e —%) G XM (2 — 9y dE
8
for { =m+1,..., n . Magnitudes vy, are pure numbers, and
Yga):yi; i i=1,..,m, Tfib):vj-(mv if j=1,...n—m

In this manner we have reduced our problem to the problem of momentums
[6]. It has for any vy, & solution, 1f and only if the vectors V) (e, 9) are
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linearly independent. Control can then be cbtained bty well known methods,
and the problem has a unlque solution. Any function u°{(%f) can be singled
out of the set of solutions by imposing on u{¢) additional constraints such
as some conditions of optimality, for example in form of a minimum of some
norm of wu(t) . The latter can be achieved by standard methods [6]. Finally,
wewe shall note that in our case the functions p®(g, 9) will always be lin-
early independent, provided that |4]| # O and that the conditlons of gene-
rality of position [7] hold for the matrices 4 and 2 .
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